Dominant spectral component analysis for transcriptional regulations using microarray time-series data

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dominant spectral component analysis for transcriptional regulations using microarray time-series data

MOTIVATION Microarray time-series data provides us a possible means for identification of transcriptional regulation relationships among genes. Currently, the most commonly used method in determining whether or not two genes have a potential regulatory relationship is to measure their expressional similarity using Pearson's correlation coefficient. Although this traditional correlation method h...

متن کامل

Measuring Correlation between Microarray Time-series Data using Dominant Spectrum Component

Microarray time-series data provides us a possible means for identification of transcriptional regulation relationships among genes. Currently, the most widely used method in determining whether or not two genes have a potential regulatory relationship is to measure their expressional similarity using Pearson’s correlation coefficient. Although this traditional correlation method has been succe...

متن کامل

a time-series analysis of the demand for life insurance in iran

با توجه به تجزیه و تحلیل داده ها ما دریافتیم که سطح درامد و تعداد نمایندگیها باتقاضای بیمه عمر رابطه مستقیم دارند و نرخ بهره و بار تکفل با تقاضای بیمه عمر رابطه عکس دارند

Time Series Forecasting Using Independent Component Analysis

The paper presents a method for multivariate time series forecasting using Independent Component Analysis (ICA), as a preprocessing tool. The idea of this approach is to do the forecasting in the space of independent components (sources), and then to transform back the results to the original time series space. The forecasting can be done separately and with a different method for each componen...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Bioinformatics

سال: 2004

ISSN: 1367-4803,1460-2059

DOI: 10.1093/bioinformatics/btg479